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Model Inversion Using Bayesian Inference And Genetic Algorithms Part IV:
Micromechanical Modeling of Powder Consolidation and Sintering
Brian J. Reardon, MST-6, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
The application of Bayesian analysis to genetic algorithm (GA) optimization of

micromechanical powder densification models rectifies a number of deficiencies in the

overall GA technique.  Firstly, the stochastic noise of the GA is suppressed and thus a

realistic assessment of model parameter sensitivities and correlations are now available

using a GA.  Secondly, a suitable stopping criteria for the GA is defined by when the

sum of the eigenvalues obtained from the principle component analysis of the a

posteriori covariance matrix reaches a limiting value.  Lastly, the generation of the

posterior probability density allows a distribution of optimal model parameter vectors to

be applied to the physics of the forward problem.  The distribution of the resulting

outcomes is then used as a guide in experimental design.
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1.0 Introduction

1.1 Inverse and Ill Posed Problems in Materials Science and Engineering

There is an ever increasing need in materials science and engineering to fit the

parameters of models, which are to be used in a predictive capacity, using

underdetermined experimental data sets.  Model inversion of this type falls under the

general category of inverse and ill – posed problems and can often be cast into the

framework of Bayesian statistics (Tarantola, 1987).  Such problems include state

function determination, chemical potential determination from limited phase diagram

data containing a high degree of uncertainty, and mechanical threshold strength

determination from mechanical tests also with a high degree of uncertainty.  In all of

these examples, model parameters must be optimized using limited and uncertain data

sets that leave the inversion underdetermined.  Likewise, if the models are to be used in

a predictive capacity, there is a need to be able to quantify the expected deviation of the

model from reality.

This report shows how a fuzzy logic based multi-objective genetic algorithm (GA)

(Reardon 1999) can be used as a Bayesian Inference Engine (BIE) to evolve a posterior

probability density (PPD) of the model parameter vector space:

Mi = {m1, m2, m3,…, mN}T. Eq. 1

MI is a particular model to be tested, mJ is one of the N parameters used in the model,

and T signifies the transpose of the vector.  The GA evolves a set or population of MI’s

which effectively defines the PPD.  Once the PPD has been sufficiently determined by

the GA, parameter vectors are selected and used in the physics of the forward problem

to evaluate the predictive capacity of the model.

The problem to be addressed through the use of GA’s and Bayesian inference

lies in the general realm of the micromechanical modeling of powder consolidation and

sintering.  Ashby’s micromechanical model (Reardon, 1998b) has 19 parameters that
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must be optimized so that the calculated densities match experimental densities for

given processing conditions.  The experimental data to be used here is for hot pressed

copper powder data (Wadley et al. 1991) as well as warm isostatically pressed beryllium

powder data (Roberts’ 1983).  The micromechanical model as well as the data used for

the optimization has been discussed extensively in previous reports (Reardon, 1998a,

1998b) and thus will not be reviewed here.

1.2 Bayesian Statistics in Model Inversion
Consider a model parameter vector such as the one defined for the

micromechanical powder consolidation problem in which 19 variables must be

optimized:

M={m1, m2,…m19}
T Eq. 2

and also consider a data vector defined as:

D={ρ1, ρ2,… ρN}T. Eq. 3

Where N is the number of data points and can be very large.  The goal of Bayesian

analysis is to come up with a way of accepting or rejecting a particular model (M) or

hypothesis given an experimental data set (D) and prior knowledge about the problem.

Thus, in Bayesian statistics, the model or hypothesis is assigned a probability of

acceptance and the total probability distribution function (PDF) of a series of models

being tested makes up what is commonly called the posterior probability density (PPD).

This goal is achievable through the central tenant of Bayesian statistics, Bayes’

Theorem:

σ M | D( ) =
P M,D( )

P D( ) =
P D | M( )P M( )

P D,M( )dM∫
 Eq. 4
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which is essentially the definition of conditional probability.  This rule was first proposed

by Rev.  Thomas Bayes and published posthumously in 1763 but has been ignored up

until the last 20 years due to the computational difficulties in evaluating the probability

integrals (Bayes, 1763).  This theorem says that the conditional probability of a model

being correct given a set of data is a ratio of the PDF of M and D to the PDF of D alone.

In Bayes’ Theorem, the term P(D | M) is not a PDF but a likelihood function.  Thus, while

the individual components of P(D | M) are probabilities, the function itself does not

integrate to 1.0.

Bayes’ rule as written above differs considerably from classical frequentist

statistics because of the dependence of the PPD on the prior PDF, P(M).  P(M) often

contains subjective information about the problem that the experimentalist has a priori.

Another major departure from frequentist statistics is the way the PPD is updated as

new experimental data becomes available.  The frequentist view point is that P(D)

should be considered an unchanging distribution and also that it is inappropriate to try to

assign a probability of correctness to a hypothesis.

Consequently, Bayes’ Rule provides the scientist with a tool that classical

statistics is not capable or providing, namely, a mathematical formalization of the

scientific method.  When a phenomenon is observed, a hypothesis explaining the event

is often created with the observer’s own bias and experience in mind.  This hypothesis

is then tested against new experimental data and if the data supports the hypothesis

then the belief in or probability of acceptance of the hypothesis increases.  An excellent

introduction to the Bayesian approach to hypothesis testing can be found in Chapter 4

of Antelman (1997).

The main difficulty in using Bayes’ rule, lays in the evaluation of the denominator:

P D( ) = P D,M( )∫ dM, Eq. 5

where the integral is formally carried over the entire N-dimensional (in this problem, N =

19) model parameter space.  The accurate and fast approximation of the integration of
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an N-dimensional, discontinuous PDF is the topic of many papers.  Duijndam (1988a,

1988b) discussed the use of Bayes’ Rule in model inversion and accomplished the

above integration by assuming the PPD had a Gaussian shape then optimized the

Gaussian parameters using least squares.  Unfortunately, most PPD’s are not Gaussian

in nature and thus other techniques were needed.  These techniques include Monte

Carlo integration, Gibb’s Sampling, and genetic algorithms (Sen and Stoffa ,1992, 1996;

Sen et al., 1993; Mallick, 1995; Gerstoft, 1998).

The PPD is a difficult function to visualize due to its multidimensionality and its

change with every new experimental data point.  However, once the PPD is derived,

regardless of the method, a number of important parameters describing it can be easily

calculated.

The mean model can be calculated:

M = Mσ M | D( )dM∫ . Eq. 6

Likewise, the a posteriori model covariance matrix is given by:

CM = M − M( ) M − M( )T
σ M | D( )dM∫ . Eq. 7

The covariance matrix provides a number of useful parameters.  The standard deviation

associated with the mean model is obtained through the square roots of the diagonal

elements of CM.  Normalization of CM through:

Cij =
Cij

Cii Cjj

 Eq. 8

produces the correlation matrix.

With CM determined, a principle component analysis (PCA) will provide valuable

insight on how well the GA is converging and what model parameters are most
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significant or sensitive.  In PCA the data of the CM is transformed into a new set of axes

of the same number which are orthogonal to each other and are ordered based on the

variance associated with that axis.  The principle components of CM can be obtain by

computing its set of eigenvalues (Λ) and corresponding orthogonal eigenvectors (U)

such that:

CM=UΛUT Eq. 9

is satisfied.  In a d-dimensional variable space there are d eigenvalues or principle

components.  However, many principle components may have small variances and thus

the intrinsic dimensionality of CM is k where k<d.

In the context of a PPD evolved by a GA, PCA is a powerful tool that assists in

overcoming many deficiencies in GA’s.  First, as the population evolves, the sum of the

eigenvalues of CM approaches a limit.  When the rate of convergence reaches an

acceptable minimum the GA can be stopped.  Second, the largest eigenvalues and their

corresponding eigenvectors indicate the most significant variables or groups of

variables in the model given the available data.  Thus, PCA acts as a form of sensitivity

analysis for the variables in the model.

Once a PPD has been determined to be reliable based on the stabilization of the

eigenvalues, an optimum model can be selected.

1.3 Genetic Algorithms in Model Inversion and Parameter Optimization

A detailed account of how a GA operates has been provided elsewhere (Reardon

1998a, 1999).  In short, a GA randomly generates a set or population of parameter

vectors M i’s where i = 1 to N and N is the population size.  This initial selection, which

occurs within parameter ranges set by the user, constitutes the a priori information used

in Bayes’ Theorem.  From this set, parameter vectors that satisfactorily solve the

optimization problem are selected.  The selected members, which are each defined by a

haploid binary string, exchange string components and thus create new members.  The

bits of the new member’s strings are then randomly flipped with a small degree of
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probability from 1 to 0 or vice versa.  The final members are then inserted into the next

generation.  Once the next generation is filled the GA starts over with selection,

crossover and mutation.

Since the GA acts as a BIE in that it uses Bayes’ Theorem to select members in

the population for crossover, the output of the GA is a PPD.  The generation of a PPD

now allows for many of the tools available in Bayesian statistics to be used in the

analysis of the output of the GA.  Namely from the PPD we can derive <M> and CM.

The beauty of this approach is that the PPD can be generated at virtually no extra cost.

Following the method outlined by Sen and Stoffa (1992), a 2-D array of M X B is

reserved where M is the number of parameters and B is the number of values each

variable can take (i.e. the number of bins).  For each model at each generation an

unnormalized PPD, σ(M), is computed and stored in the proper position in the bin array

for each model parameter comprising each model.  At the end of the GA run the model

parameter PPD values are normalized.  Also in a vector of length M, each component of

M σ(M) is stored and summed with the correspond values from the other models.  This

vector provides <M>.  CM is determined by summing up MMT σ(M) in a square array of

MM for each model and at the end of the run subtracting <M><M>T.  The FORTRAN 90

code used to evaluate these quantities was presented previously (Reardon 1999).

Once the PPD, <M>, and CM have been sufficiently determined, the GA can be

stopped and optimal model parameter vectors can be selected and used in the physics

of the forward problem for conditions that have not been experimentally tested.

2.0 Optimizing the parameters of the Ashby Micromechanical Model for Beryllium
Powder

Previous work published regarding the use of GA’s to optimize parameters of

Ashby’s micromechanical powder densification model (Reardon 1998b, 1998c)

presented graphs such as those of Figure 1.  Figure 1 shows the average objective

value for the entire population as a function of generation along with the standard

deviation of the average.  Since each objective is defined to be a minimization of the

difference between the experiment and theory, one would expect the average for the
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population to go to zero.  Similar graphs can be made for the actual variables being

optimized.  Such graphs are shown in Figures 2a and 2b for the yield stress and surface

energy of beryllium powder.  Examination of figures 2a and 2b indicates that some

variables (such as yield stress) converge quite rapidly whereas other variables do not.

This fact would indicate that for the given set of data, yield stress is a very important or

sensitive parameter. However, such ratiocination is problematic for two reasons.  First,

there is no way of filtering out the inherent stochasticity of the GA.  Consequently, it is

impossible to determine how much of the standard deviation of the average is due to

noise and how much is due to a legitimate variation that exists due to the model being

underdetermined.  Second, inspection of graphs such as this provides no insight as to

how the parameters may be correlated.  A third problem with underdetermined model

inversion is shown in figure 3.  Figure 3. shows the result of a copper powder

optimization (Reardon 1998c).  In this work the GA optimized the Ashby model using

the data of Wadley et al.(1991), then five optimal members were selected from the

evolved population and implemented into the forward model under the original

experimental processing conditions.  The conditions here involved ramping the

temperature and pressure up to 723K and 50MPa for 15000s and holding constant for

another 15000s.  As figure 3. shows all of the models reach approximately the same

final end point but the path each took to get there is considerably different.  This fact

would then indicate that just because a model fits a particular data set, we can not

necessarily use the model in any sort of predictive capacity.

A fourth problem deduced from figures 2a,b revolve around the issue of a finding

a suitable stopping criteria for the GA.  The yield stress data would indicate that the GA

could be stopped at 30 generations whereas the surface energy data would indicate

that more optimization is necessary.  It will be shown here that the application of Bayes

Theorem will help to resolve these problems.

The issue of suppressing the inherent noise of the GA so that a real signal can

be obtained is shown in the marginal PPD plot for Beryllium yield stress in Figure 4a,b.

Figure 4a shows the unnormalized beryllium yield stress PPD at generation 0 and figure
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4b shows it at generation 80.  As these graphs show, the calculation of the PPD

suppresses the noise inherent within the GA and thus provides a clear signal for the

parameter values.

The yield stress value of figure 4b is approximately 5 times higher than the

currently accepted bulk value for beryllium.  The reason the GA optimized the model to

such a high yield stress is because of a faulty assumption built into the model about the

geometry of a powder compact.  The micromechanical model presented here assumes

that the powder consists of a dense random packing of monosized spheres that are in

point contact.  However, the real beryllium powder consists of attrition milled platelets in

face contact.  Obviously, the yielding behavior of the two powders will be different and

the GA optimizes the yield stress of the powder to account for this difference.

PCA of the Cm for the beryllium optimization problem resolves a number of other

problems.  Figure 5 shows the evolution of all 20 eigenvalues as a function of

generation.  The Cm is a 20 X 20 matrix corresponding to the 19 variables being

optimized plus a dummy variable included in the optimization to ensure the proper

performance of the GA.  In PCA, the largest eigenvalues are the most significant and

correspond to eigenvectors that indicate the most important or significant variables in

the optimization.  Thus the largest two eigenvalues have eigenvectors that are

dominated by the yield stress and the power law creep reference stress.  The next

largest eigenvalue has a corresponding eigenvector dominated by the creep transition

temperature, volume diffusion activation energy, and the power law creep reference

stress.  This data can be viewed in two ways.  First, one can assume that given the

processing conditions provided in the data all one has to do is test powder properties

related to yield stress and powder law creep reference stress in order to ensure that the

powder will behave properly.  On the other hand, one can look at the variables that are

deemed to be insignificant according to PCA and then collect data in the regimes

believed to activate those mechanisms.  In Table I, the most significant parameters for

each eigenvector are in bold down to the eigenvector dominated by the random
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variable.  Model parameters less sensitive than the dummy variable correspond to

mechanisms that are not active to any significant extent.

Another advantage of PCA lies in the fact that the sum of the eigenvalues

approaches a limit as the GA evolves.  As in the case of D-optimal design of

experiments, when the sum reaches a limit, the optimization can be stopped.

The final point to be addressed in the beryllium powder optimization problem lies

in the realm of experimental design.  Since the GA provides a distribution of optimum

models this distribution can be used to calculate the expected average relative density

of the model along with its uncertainty.  Figure 6 shows the expected average relative

density for the unoptimized model distribution.  As a function of temperature and

pressure where the simulation incorporates a 1 hour ramp up, 1 hour hold, and 1 hour

ramp down.  This graph essentially depicts the a priori model distribution (P(M)) in

Bayes’ theorem.  Figure 7 shows the standard deviation of the average relative density

shown in figure 6.  Clearly the robustness of the model would benefit from data

collected within the vicinity of 1100K and 0MPa.  In other words, a sintering experiment

is clearly needed to make this model more robust.  After the model was optimized using

warm isopressed data (Roberts, 1983) a similar average expected densification plot can

be generated.  This is shown in figure 8.  The uncertainty of figure 8 is shown in figure

9.  From the comparison of figures 7 and 9 one can see how the maximum uncertainty

of the model dropped from 0.146 to 0.139.  While this drop is not impressive, there is a

significant change in the uncertainty landscape of the two plots.  Inspection of Figure 9

again shows the need for sintering data in the vicinity of 1100K.

3.0 Optimizing the parameters of the Ashby Micromechanical Model for Copper
Powder

As similar analysis of Wadley et al.’s (1991) copper powder data was also

conducted. Figure 10 shows the evolution of all 20 eigenvalues as a function of

generation.  The largest eigenvalues has an eigenvector dominated by the yield stress

and the power law creep activation energy.  The next largest eigenvalue has a

corresponding eigenvector dominated by the surface diffusion activation energy.  All
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parameters are shown in Table II.  The most significant parameters for each

eigenvector are in bold down to the eigenvector dominated by the random variable.

Finally, the information gained from the GA optimization using the copper powder

data can be used in terms of experimental design. Figure 11 shows the a priori average

relative density for the unoptimized model distribution as a function of temperature and

pressure where the simulation incorporates a 15000s ramp up and 15000s hold.  Figure

12 shows the standard deviation of the average density of figure 11.  Clearly the

robustness of the model would benefit from sintering data collected within the vicinity of

1200K.  After the model was optimized using hot pressing data (Wadley et al. 1991) an

average expected densification plot can be generated.  This is shown in figure 13.  The

uncertainty of figure 13 is shown in figure 14.  From the comparison of figures 12 and 14

one can see how the maximum uncertainty of the model dropped from 0.164 to 0.053.

This drop in maximum uncertainty along with the shifting in the uncertainty landscape

indicates that the temperature and pressures regimes where the experimental data was

collected were wisely chosen.  If further experiments are to be conducted to ensure the

robustness of the model, then sintering data in the vicinity of 1200K should be collected.

4.0 Conclusions

The application of Bayesian analysis to GA optimization of micromechanical

powder densification models rectifies a number of deficiencies in the overall GA

technique.  First, the calculation of the PPD from the GA output allows for the

suppression of the inherent stochasticity of the GA.  Second, PCA of the resulting Cm

provides not only a sensitivity analysis of the model parameters, but also a suitable

stopping criteria for the optimization itself.  Lastly, the generation of the PPD allows a

distribution of optimal model parameter vectors to be applied to the physics of the

forward problem.  The distribution of the resulting outcomes are then used as a guide in

experimental design.
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7.0 Tables

Table I.  The final eigenvectors for the Beryllium powder optimization.
ε1 ε 2 ε 3 ε 4 ε 5 ε 6 ε 7

Sur. Eng. 0.00011248 6.3795e-06 -6.5527e-05 -3.5378e-07 -1.2178e-06 -0.0041734 0.0051256
Yield 9.2513e-07 1.3849e-08 -1.5460e-07 -1.8110e-10 -7.2969e-10 3.6466e-06 -9.5214e-07
Temp. Dep. 0.0034461 2.7925e-05 -0.00059309 5.8510e-07 9.0403e-08 -0.0022471 0.017168
PLC. Exp. 0.00090594 1.2912e-05 -0.00023453 1.0677e-09 -6.3828e-08 0.0052271 -0.0014506
PLC. Stress 3.6493e-07 7.7689e-09 -3.6120e-09 -1.4555e-10 -1.3043e-09 -1.7341e-05 1.9379e-05
PLC. Eng. 1.0035e-06 8.0725e-08 3.8145e-07 -5.7164e-10 7.0483e-09 1.5258e-05 -1.4037e-05
CreepTrans. -5.8041e-06 -6.8814e-08 9.2116e-07 -8.3110e-10 -4.0534e-09 -3.1914e-05 9.9336e-06
PrexpCreep 0.010815 0.00018643 -0.0029950 5.4693e-06 -2.9666e-05 0.71296 -0.69432
VD pre-exp. 5.9044e-07 1.5409e-06 9.6264e-06 -4.9074e-05 1.0000 2.0417e-05 -2.0351e-05
VD Eng. -9.8547e-06 -1.3947e-07 1.8058e-06 6.9023e-11 4.5048e-10 -1.2043e-05 -2.7372e-05
BD pre-exp. 1.2233e-05 -2.2073e-05 -2.7200e-05 1.0000 4.9223e-05 -1.4119e-05 -5.2395e-06
BD Eng. -5.6123e-05 1.2140e-06 2.4132e-05 -2.3474e-08 5.5798e-08 -0.00015320 -0.00012594
SD pre-exp. 0.050752 -0.72637 0.68506 2.3168e-06 -5.4129e-06 0.016701 0.014173
SD Eng. 6.1806e-06 -4.3483e-08 -2.7242e-06 2.6070e-09 -2.8605e-09 1.1936e-05 1.9817e-05
BM pre-exp -0.0073292 0.68594 0.72661 3.5670e-05 -8.1148e-06 0.028240 0.025171
BM Eng. -8.8516e-05 -1.2388e-06 1.3237e-05 -3.1937e-09 5.4947e-09 -0.00017622 -0.00015877
Radius -0.93644 -0.042811 0.012939 1.5561e-05 3.5423e-07 0.24936 0.24254
Stage 2 -0.33804 -0.0052319 0.046726 -4.7845e-06 1.0129e-06 -0.61387 -0.66917
Stage 1 0.077524 0.00039443 -0.019217 1.0468e-05 6.6762e-06 0.22648 0.10047
Random 0.0056966 6.5372e-05 -0.0010197 3.8898e-07 -4.3557e-08 0.015696 0.0079593

Table I. Continued.
ε 8 ε 9 ε 10 ε 11 ε 12 ε 13 ε 14

Sur. Eng. -0.0077778 0.057916 0.98378 -0.16828 -0.019973 0.0022180 9.7468e-05
Yield -1.3695e-06 -0.00065307 0.00018013 -6.8174e-05 -0.00073525 0.0047875 -0.00093025
Temp. Dep. -0.016621 0.99623 -0.047286 0.065238 0.021246 -0.0014269 0.00022052
PLC. Exp. -0.011096 -0.020708 0.022208 0.0042630 0.99937 -0.012292 3.1544e-05
PLC. Stress 5.5513e-07 3.2484e-05 -3.3308e-05 -6.6479e-05 -0.00034518 -0.0073374 0.0060186
PLC. Eng. 6.8684e-05 0.00011073 8.6153e-05 -0.00016873 0.0016713 0.014948 -0.00055156
CreepTrans. 1.2135e-06 -0.00012776 -0.00016024 -3.7454e-05 0.0027119 -0.0087860 0.015513
PrexpCreep 0.095800 0.015330 0.0069697 0.0031952 -0.0035318 0.00021930 -1.1731e-05
VD pre-exp. 9.5095e-06 6.5311e-07 1.3229e-06 -3.0670e-07 2.2015e-08 7.6917e-08 5.0895e-09
VD Eng. 4.8562e-05 -8.4873e-05 -6.5184e-05 1.1946e-06 -0.00016319 -0.0078271 -0.013486
BD pre-exp. 8.5119e-06 -4.1694e-07 4.1154e-07 -6.7545e-08 2.5589e-07 4.2805e-09 5.3993e-10
BD Eng. 0.0020476 -0.0011263 0.0023570 0.0015630 -0.012363 -0.99881 0.023951
SD pre-exp. -0.0044667 -2.9158e-05 1.1177e-05 1.8010e-05 6.8565e-06 -7.3459e-07 -1.1131e-07
SD Eng. -0.00024070 -0.00010371 -1.8237e-05 -1.3234e-05 -3.2897e-05 -0.032452 0.080004
BM pre-exp -0.0055290 -2.5823e-05 -3.1699e-06 3.3093e-05 -4.8601e-06 8.8834e-08 -3.8337e-08
BM Eng. 7.5369e-05 0.00028144 -0.00012846 -0.0015070 -0.00020763 -0.026709 -0.99628
Radius 0.0082837 -0.00024785 3.1416e-05 0.00028797 -1.4760e-05 2.0898e-06 7.0509e-07
Stage 2 -0.24231 0.0078331 -0.0032491 -0.010522 0.00014197 -0.00032387 0.00024927
Stage 1 -0.96488 -0.019168 -0.0017546 0.026681 -0.012321 -0.0018110 -0.00015363
Random -0.023096 0.055546 -0.17142 -0.98314 0.0087948 -0.0021214 0.0015544



15

Table I. Continued.
ε 15 ε 16 ε 17 ε 18 ε 19 ε 20

Sur. Eng. 8.0638e-05 -2.5115e-06 -0.00011142 0.00025125 0.00016984 -5.0269e-05
Yield -0.0035770 -0.021474 -0.032377 -0.017202 -0.98930 0.13945
Temp. Dep. 3.0459e-05 -7.2930e-05 -1.1258e-05 0.00011664 -0.00067506 0.00013318
PLC. Exp. -0.00037367 -0.00094490 0.0029905 -0.00049684 -0.00085793 -4.0887e-05
PLC. Stress -0.019574 0.023571 0.042594 0.036240 -0.14175 -0.98780
PLC. Eng. -0.015363 -0.021993 -0.62746 -0.77531 0.026220 -0.059598
CreepTrans. 0.0025469 0.32893 -0.73835 0.58845 0.0062744 -0.0031917
PrexpCreep 3.8902e-05 2.4816e-05 -1.3197e-05 4.4859e-05 -6.6994e-06 -2.4620e-05
VD pre-exp. 7.6895e-09 2.0447e-09 1.8835e-09 1.0918e-08 -1.0092e-09 -2.1001e-09
VD Eng. -0.066821 -0.94122 -0.24015 0.22496 0.020893 -0.026260
BD pre-exp. 4.6947e-10 -4.4425e-10 -3.7208e-11 5.0252e-11 4.7073e-15 4.0531e-17
BD Eng. -0.034016 0.0056524 -0.00053573 -0.019092 -0.0033493 0.0081353
SD pre-exp. -1.0885e-07 5.3368e-08 -1.4896e-09 1.0860e-08 4.6489e-11 6.5851e-13
SD Eng. 0.99366 -0.064938 -0.022495 0.0011156 -0.0046273 -0.020777
BM pre-exp -7.0243e-08 2.5547e-08 3.0917e-09 -1.3052e-08 -4.3026e-10 -8.4455e-12
BM Eng. 0.079814 0.012958 -0.0094302 0.0064128 -0.00058456 -0.0072316
Radius -9.3611e-09 2.9800e-08 -1.1692e-07 6.1443e-08 -1.4157e-07 -5.1836e-09
Stage 2 -6.4686e-05 1.1467e-05 8.7124e-06 -3.1777e-05 -7.8670e-06 4.2642e-06
Stage 1 -0.00029013 -6.8582e-06 -9.4992e-05 -6.9998e-05 1.9912e-05 7.9151e-06
Random -0.00020623 -2.8732e-05 0.00017736 3.0633e-05 -7.8936e-06 0.00010910

Table II.  The final eigenvectors for the Copper powder optimization.
ε1 ε 2 ε 3 ε 4 ε 5 ε 6 ε 7

Sur. Eng. -0.00084031 -6.1180e-05 2.7414e-07 6.9684e-06 5.4140e-05 0.00029394 0.0041409
Yield 5.8670e-06 4.6447e-07 4.1442e-09 1.2387e-08 -2.4983e-07 -4.9154e-06 -2.3794e-05
Temp. Dep. -0.00079738 -2.1943e-05 1.4217e-06 5.8068e-05 5.1199e-06 -0.00086217 0.0041114
PLC. Exp. -0.00013277 -8.0210e-05 -7.4596e-07 2.4906e-05 2.2214e-05 0.0017448 -0.0010393
PLC. Stress 5.2389e-06 -3.3131e-07 -9.2456e-09 -1.3849e-07 2.1703e-07 2.4794e-05 -4.3468e-05
PLC. Eng. -9.8586e-06 -2.0938e-06 -1.5411e-08 2.8659e-07 3.5657e-07 4.2125e-05 -1.6416e-06
CreepTrans. 7.6916e-05 1.6145e-05 3.3817e-08 -2.1675e-06 -1.9154e-06 -0.00032948 3.4796e-05
PrexpCreep -0.010270 0.00082649 -4.1144e-06 -0.00081499 0.0010398 -0.021601 0.093780
VD pre-exp. 3.7619e-06 -6.6044e-05 1.00000 -0.0026832 -3.5957e-05 1.1085e-05 -8.9027e-07
VD Eng. -3.5544e-06 7.0759e-07 -2.1839e-08 -3.2696e-07 3.2003e-07 -2.1966e-05 4.7236e-05
BD pre-exp. -0.00059443 0.043710 -0.0026778 -0.99902 -0.0061716 0.0031623 -0.00035279
BD Eng. -9.9346e-05 -7.4245e-06 2.8855e-08 6.8400e-07 2.7844e-06 5.7276e-05 0.00039726
SD pre-exp. -0.013063 0.81452 0.00016060 0.032154 0.57851 0.025917 0.0015074
SD Eng. -3.5115e-06 2.5714e-08 -3.5525e-09 -3.1401e-08 9.2185e-08 -6.0904e-06 2.3851e-05
BM pre-exp 0.032267 0.57655 8.9765e-05 0.030363 -0.81462 0.041207 0.018224
BM Eng. 6.8267e-06 9.7983e-07 -1.8271e-09 -2.5863e-08 -2.8152e-07 -1.9956e-05 -1.1046e-05
Radius -0.95596 0.019590 8.5233e-06 0.0010590 -0.039152 -0.21330 -0.19676
Stage 2 0.19671 0.0089860 7.8492e-08 0.00066049 -0.0065390 0.022138 -0.97555
Stage 1 -0.21479 -0.042048 -8.9680e-06 0.0013007 0.010674 0.97527 -0.019607
Random -0.0010244 -3.1621e-05 4.0833e-07 2.5461e-05 -9.9781e-07 -0.0015052 0.0058367
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Table II. Continued.
ε8 ε 9 ε10 ε11 ε12 ε13 ε14

Sur. Eng. -0.015227 -0.010732 -0.10612 0.98832 -0.10764 0.0015712 2.8521e-05
Yield 3.1159e-05 0.00012930 -9.3557e-05 0.00018965 0.00082817 -0.0065512 -0.018256
Temp. Dep. 0.038729 0.98758 -0.10948 0.010995 0.10508 -0.00058959 -0.0041054
PLC. Exp. -0.012871 0.096757 -0.088632 -0.11589 -0.98444 0.00086065 0.0067974
PLC. Stress -0.00042803 4.6017e-05 -0.0014597 -0.00071073 -0.0036236 -0.025005 -0.24600
PLC. Eng. 0.00019980 -0.00078858 -0.0010115 0.00064983 -0.0024100 0.025787 0.17626
CreepTrans. -0.0023403 0.0031388 -0.0031553 0.00060210 0.0066839 -0.32534 0.89931
PrexpCreep -0.99349 0.031672 -0.042652 -0.017556 0.021854 -0.00021476 -0.0025971
VD pre-exp. -2.4978e-06 -1.0815e-06 3.0019e-07 -2.9867e-07 -8.2417e-07 3.8496e-08 -2.0396e-08
VD Eng. -0.00031172 0.00028159 -0.00020253 -0.00056099 0.00028035 -0.039329 -0.11072
BD pre-exp. 0.00075410 3.5878e-05 -9.6652e-06 1.7729e-05 -3.0482e-05 -8.8641e-08 8.2510e-09
BD Eng. 0.0010296 -0.0016439 0.0012375 0.0014111 -0.0034598 -0.94364 -0.29327
SD pre-exp. 0.00096951 -1.6862e-05 -1.4132e-06 5.6525e-06 -2.1318e-05 1.3116e-07 -1.5507e-08
SD Eng. 5.2450e-06 0.00024274 4.1585e-05 0.00040328 -0.00028880 -0.024824 -0.030374
BM pre-exp 9.2355e-05 -1.0507e-06 -4.6758e-06 1.7806e-05 -1.8103e-05 9.8438e-08 -3.7556e-08
BM Eng. -1.7720e-05 -0.00010625 -0.00074828 0.00023010 0.00013567 0.013964 -0.0071669
Radius -0.0040775 1.7247e-05 -2.5444e-05 1.4277e-05 1.1771e-05 9.2741e-08 3.1246e-08
Stage 2 -0.093895 0.0063203 -0.010752 0.0021101 0.0036073 -0.00041547 -0.00037976
Stage 1 -0.020670 0.0010830 -0.0021309 -0.00066454 0.0024306 -5.4071e-05 0.00024727
Random 0.042665 -0.11897 -0.98333 -0.096703 0.087638 -0.00030354 -0.0030846

Table II. Continued.
ε15 ε16 ε17 ε18 ε19 ε20

Sur. Eng. 0.00094864 -0.00061828 -0.00054108 0.00045964 0.00034669 -6.1280e-06
Yield -0.024042 0.13418 -0.021218 -0.015275 0.034436 0.98953
Temp. Dep. -0.0018157 0.00053291 0.00082655 -0.00016776 0.00040478 -0.00042554
PLC. Exp. 0.0013451 -0.0037974 -0.00010114 0.00045052 -6.6869e-06 0.0015092
PLC. Stress 0.59475 0.72026 -0.22206 -0.090462 -0.00036184 -0.094061
PLC. Eng. -0.74583 0.61850 -0.11584 -0.074634 0.0027856 -0.10229
CreepTrans. 0.25723 0.045382 -0.12713 -0.0043702 -0.027454 0.012690
PrexpCreep -0.0012386 -0.00019589 0.00084224 -3.3003e-06 0.00012647 -2.8855e-05
VD pre-exp. -1.3477e-08 5.3874e-09 -2.0557e-08 2.7255e-10 -4.2356e-09 -4.7398e-09
VD Eng. -0.091935 -0.23405 -0.94670 0.15677 -0.044967 0.010885
BD pre-exp. -1.2849e-08 1.4005e-10 1.2041e-10 -5.2050e-12 1.9003e-12 -6.4592e-15
BD Eng. -0.12073 -0.011822 0.082958 -0.019879 0.036807 -0.012795
SD pre-exp. 2.1600e-08 3.6343e-09 3.8883e-09 -3.9747e-10 3.5898e-10 -5.8171e-12
SD Eng. -0.010068 0.021118 0.053192 0.031071 -0.99653 0.032467
BM pre-exp 1.8071e-08 2.8653e-08 1.2816e-08 1.2631e-08 -4.7538e-08 4.8390e-09
BM Eng. -0.011451 -0.15245 -0.12124 -0.97982 -0.040135 0.0040247
Radius -6.5950e-08 4.7576e-08 1.4462e-07 -6.1678e-08 -4.9491e-08 -3.1668e-08
Stage 2 -0.00020113 -7.1256e-05 8.6852e-05 2.1457e-05 2.9778e-06 -2.9784e-05
Stage 1 7.9806e-05 -3.4072e-05 -4.1006e-05 -1.1500e-05 -1.6368e-05 1.4375e-05
Random -0.0010292 -0.0013545 0.0011907 0.00084453 3.9067e-05 3.4774e-06
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8.0 Figures
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Figure 1. The average objective value for the entire population as a function of
generation along with the standard deviation of the average (Reardon 1998b).
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Figure 2a.  The average value for the beryllium yield stress as a function of generation
along with the standard deviation (Reardon 1998b).
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Figure 2b.  The average value for the beryllium surface energy as a function of
generation along with the standard deviation (Reardon 1998b).
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Figure 3.  Five GA optimized copper powder densification models (Reardon 1998c).  All
of the models reach the same final end point but the path each took to get there is
considerably different.



19

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 12001400

P
P

D

Yield Stress (MPa)

Figure 4a.  The unnormalized beryllium yield stress marginal PPD at generation 0.
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Figure 4b.  The unnormalized beryllium yield stress marginal PPD at generation 80.
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Figure 5. The evolution of all 20 eigenvalues from the Beryllium powder optimization as
a function of generation.
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Figure 6.  The a priori average model density for beryllium powder as a function of
temperature and pressure assuming a 1 hour ramp up, hold and ramp down.

Figure 7.  The standard deviation in the a priori average model density of figure 6.
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Figure 8.  The a posteriori average model density for beryllium powder as a function of
temperature and pressure assuming a 1 hour ramp up, hold and ramp down.

Figure 9.  The standard deviation in the a posteriori average model density of figure 8.
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Figure 10. The evolution of all 20 eigenvalues from the copper powder optimization as a
function of generation.
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Figure 11.  The a priori average model density for copper powder as a function of
temperature and pressure assuming a 15000s ramp up and a 15000s hold.

Figure 12.  The standard deviation in the a priori average model density of figure 11.



25

Figure 13.  The a posteriori  average model density for copper powder as a function of
temperature and pressure assuming a 15000s ramp up and 15000s hold.

Figure 14.  The standard deviation in the a posteriori average model density of figure
13.
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